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Abstract

The plastic deformation of crystalline and non-crystalline solids incorporates microscopically localized deformation modes that
can be precursors to shear localization. Shear localization has been found to be an important and sometimes dominant
deformation and fracture mode in metals, fractured and granular ceramics, polymers, and metallic glasses at high strains and
strain rates. Experiments involving the collapse of a thick walled cylinder enable controlled and reproducible application of plastic
deformation at very high strain rates to specimens. These experiments were supplemented by hat-shaped specimens tested in a
compression Hopkinson bar. The initiation and propagation of shear bands has been studied in metals (Ti, Ta, Ti–6Al–4V, and
stainless steel), granular and prefractured ceramics (Al2O3 and SiC), a polymer (teflon) and a metallic glass (Co58Ni10Fe5Si11B16).
The first aspect that was investigated is the microstructural evolution inside the shear bands. A fine recrystallized structure is
observed in Ti, Cu, Al–Li, and Ta, and it is becoming clear that a recrystallization mechanism is operating. The fast deformation
and short cooling times inhibit grain-boundary migration; it is shown, for the first time, that a rotational mechanism, presented
in terms of dislocation energetics and grain-boundary reorientation, can operate within the time of the deformation process. In
pre-fractured and granular ceramics, a process of comminution takes place when the particles are greater than a critical size ac.
When they are smaller than ac, particle deformation takes place. For the granular SiC, a novel mechanism of shear-induced
bonding was experimentally identified inside the shear bands. For all materials, shear bands exhibit a clear self-organization, with
a characteristic spacing that is a function of a number of parameters. This self-organization is analyzed in terms of fundamental
material parameters in the frame of Grady–Kipp (momentum diffusion), Wright–Ockendon, and Molinari (perturbation) models.
© 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

Professor A.S. Argon’s contributions in the field of
mechanical behavior of materials cover an extraordi-
narily broad range and are characterized by a great
depth of thought, as well as rigor in conception and
computation [1–5]. A recurring theme in Professor
Argon’s work has been shear localization, especially in
polymers and glassy metals. He demonstrated that the
nucleation and growth of shear is the prevalent defor-
mation mechanism in glassy media. Deng et al. [6]
performed molecular dynamics calculations that show

clearly localized regions of intense shear as the main
entities responsible for plastic deformation of glasses.
Bulatov and Argon [7–9] present analytical calculations
which show that strain localization is an integral part of
inelastic deformation of non-crystalline materials. The
Argon concept of ‘local inelastic transformation ’ is
shown in Fig. 1(a) [6]. Small regions, marked by ellipses
in the figure, undergo considerably higher strain than
the globally imposed deformation. These strain ellip-
soids are equivalent to transformation centers. As de-
formation proceeds, the local inelastic transformations
organize themselves in bands. Fig. 1(b) and (c), from
Bulatov and Argon [7], show these bands, which have a
characteristic spacing and organize themselves into a
pattern. Shear localization in glassy metals was clearly
demonstrated experimentally by Pampillo and Chen
[10], among others.
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The objectives of this contribution are: (a) to illus-
trate the importance of shear localization at high strain
rates; (b) to present a mechanism for the microstruc-
tural evolution within shear bands; and (c) to propose
that their self-organization plays a key role in the
global deformation. The generality of localization will
be demonstrated by showing illustrated examples in
metals, ceramics, polymers, and metallic glasses.

2. Experimental approach

The shear bands described in this paper were gener-
ated by dynamic loading of the specimens and can be
considered adiabatic. The following experimental tech-
niques were used:
1. The hat-shaped specimen, in which one single band

is forced by prescribed initial conditions. This tech-
nique was introduced by Meyer and Manwaring [11]
and was used successfully for steel [12], Cu [13–15],
Ti [16], Ta [17–19], and Al–Li alloys [20,21]. Fig.
2(a) shows the hat-shaped specimen placed in a
Hopkinson pressure bar. The strain, upon activation
of the pressure bar, is localized in a thin region, and
strain rates of 104 s−1 and shear strains of up to
5–6 are easily and reproducibly achieved. It should
be pointed out that this localization is forced, and
not spontaneously generated.

2. The thick-walled cylinder technique, in which a
thick-walled cylinder is collapsed (totally, or to pre-
scribed strains) by explosives placed co-axially with
the cylinder. The material under investigation
(metal, metallic glass, ceramic or granular medium)
is placed within copper tubes (both outside and
inside) and the energy of the explosive produces the
implosion of the cylinder at initial collapse velocities
on the order of 200 m s−1. Fig. 2(b) shows the basic
configuration. The material (M) is encased in copper
tubes, and the external energy is provided by an
explosive which is initiated at the top. The shear
band pattern is shown after the collapse of the
cylinder in Fig. 2(c). This technique was developed
by Nesterenko et al. [22,23]. The inner copper tube
serves as a stopper, and strains in the inner surface
can be prescribed by the size of the orifice and other
dimensions.

3. Microstructural evolution in shear localization

3.1. Metals

It is impossible to resolve the details of microstruc-
ture evolution within shear bands by optical or scan-
ning electron microscopy. Some of the earliest detailed
observations by TEM were made by Grebe et al. [24]
and by Meyers and Pak [25] on shear bands produced
in Ti–6Al–4V and commercial purity titanium, respec-
tively. Fig. 3(a) shows a TEM micrograph of a shear
band in Ti observed under an accelerating voltage of 1
MeV. The shear band has a thickness of approximately
10 �m and cuts through the micrograph in a diagonal
manner. The electron diffraction patterns inside and
outside of the shear band are radically different; outside
the band, the characteristic pattern for a single crys-
talline orientation is clear. Inside the band, a ring-like
pattern, produced by many crystallographic orienta-
tions, is apparent. At a higher magnification, the de-
tailed structure inside of the shear band is revealed
(Fig. 3(b)). It consists of equiaxed grains, with diame-
ters of 0.05–0.2 �m. The dislocation density is relatively
low. This remarkable feature led to the suggestion by
Meyers and Pak [23] that the structure was due to
dynamic recrystallization. The microscopic observa-
tions made within areas of intense plastic deformation
in copper, tantalum, and an Al–Li alloy, produced by
the hat shaped technique, are shown in Fig. 4(a)– (c),
respectively. Dynamic recrystallization in shock-condi-
tioned copper was first observed by Andrade et al. [14];
in tantalum, it was first observed by Meyers et al. [17],
and Nesterenko et al. [18] and confirmed by Nemat-
Nasser et al. [26]. In Al–Li alloys, Chen and Vecchio
[20] and Xu et al. [21] observed dynamic recrystalliza-
tion. The microstructures for these different crystal

Fig. 1. (a) Displacement fields of atoms(indicated by magnitude and
direction of lines) when assemblage of non-crystalline atomic array is
subjected to a shear strain of 5×10−2; molecular dynamics simula-
tion(from Deng et al. [6]), (b) and (c) Regions of plastic deformation
organizing themselves into bands as plastic stain is increased (from
Bulatov and Argon [9])
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Fig. 2. Two experimental techniques applied for large strain, high strain-rate deformation of materials: (a) hat-shaped specimen(initial and final
configurations); (b) thick-walled cylinder method; (c) initial and final configurations (cross section) in thick-walled cylinder technique.

structures (HCP, FCC, BCC) are remarkably similar:
approximately equiaxed micrograins with diameters be-
tween 0.1 and 0.3 �m. The grains have a relatively low
dislocation density, and the dihedral angles at grain
boundary triple points (�120°) indicate that the
boundaries have energies consistent with high angles.
Three such triple points are marked by arrows in Fig. 4.
For tantalum and 8090 Al–Li alloy, a dark-field mi-
crograph is shown in Fig. 4(b) and (c), respectively, to
better illustrate the morphology of the grains and the
significant misorientations. The microstructures shown
in Fig. 4 are clearly indicative of recrystallization. Since
the thermo-mechanical history of the shear localization
regions is rather complex, one asks the obvious
questions:
1. Do the observed recrystallization features occur

during or after plastic deformation?
2. What is the mechanism of recrystallization?

First, calculations will establish for titanium, copper,
and tantalum, the plastic strains required to produce
temperatures at which diffusional processes become
important; this temperature is set as 0.4Tm, where Tm is

the melting temperature. This can be readily done by
assuming adiabatic conditions for the deformation pro-
cess and using a constitutive equation that incorporates
strain hardening, strain-rate hardening, and thermal
softening. One possible constitutive equation, useful
due to its simplicity, is the Johnson-Cook [27] equation,
which expresses the flow stress, �, as a function of a
number of parameters with a modified thermal soften-
ing component (for ease of integration):

�= (�0+k�n)
�

1+C1 ln
� ��

�� 0
�n

e−�(T−Tr) (1)

where �0 and �� 0 are the yield stress and the strain rate
at the reference temperature Tr, respectively; k and n
are strain-hardening parameters; C1 is a strain-rate
hardening parameter; Tr is a reference temperature; � is
the plastic strain; �� is the strain rate; and � is a thermal
softening parameter. The temperature is obtained from
the conversion of the deformation energy to internal
energy using the parameter � (rate of conversion of
deformation energy into heat, usually taken as 0.9) and
integrating:



M.A. Meyers et al. / Materials Science and Engineering A317 (2001) 204–225 207

dT=
� �

�C
�

� d�T

=T0+
1
�

ln
�

e−�(T0−Tr)

+
���

�C
��

1+C1 ln
� ��

�� 0
�n�

�0+
� k

n+1
�

�nn�
n

(2)

The heat capacity is C and the density is �. The
temperatures, normalized with respect to the correspond-
ing melting temperature, are plotted in Fig. 5(a) as a
function of plastic strain for titanium, copper (shock
hardened), and tantalum. The true strain (�t) required to
reach the recrystallization range is material dependent.
For titanium, the value is reached for �t=1.2; for copper
(shock-hardened to increase its flow stress) the strain is
approximately 1.9; and for tantalum, the required strain
is much higher, approximately 4.4. The strains generated
in the hat-shaped specimen are sufficient to create these
favorable thermal regimes for Cu, Ti and the Al–Li alloy.
Meyers et al. [17] obtained the temperature of dynamic
recrystallization in isolated areas using the hat-shaped
specimen at an engineering shear strain �=4 (�t=1.2)

and, recently, Nemat-Nasser et al. [26] obtained recrys-
tallization using the hat-shaped specimen, but at �=9
(�t=1.9). However, this is the upper limit of deformation
accessible using the hat specimen, and the thick-walled
cylinder technique is more appropriate at these high
strains. The strain rate imparted by both methods is fairly
similar, approximately 4×104 s−1.

The cooling times can be estimated from a computa-
tional heat-transfer analysis. The results are shown in
Fig. 5(b). Shear-band thicknesses were taken as 10, 200,
and 100 �m for titanium, copper, and tantalum, respec-
tively. These values are obtained from experimental
measurements. If the recrystallized structure forms after
deformation, a migrational mechanism is required, be-
cause of the absence of mechanical assistance. It is
possible to estimate the size of the recrystallized grains
assuming migrational recrystallization. To a first approx-
imation, it is assumed that the following simple grain
growth equation can be used [28]:

�d=k0�t1/n exp
�

−
Q

2RT(t)
�

(3a)

Fig. 3. (a) TEM micrograph of shear band in titanium arrows represent the boundary between matrix (M) and shear band ; (b) Microstructural
details within band.
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Fig. 4. TEM micrographs of microcrystalline structure within shear band in (a) copper (Andrade et al.[14]), (b) tantalum(Nesterenko et al.[18] and
(c) 8090Al–Li alloy (Xu et al.[21])

By summation, over the entire time, one has:

d�k0 �
N

i=0

�
exp

�
−

Q
2RT(ti)

�n
�t1/n (3b)

where �d is the change in the instantaneous grain size
d, k0 is a rate constant, Q is the activation energy for
grain growth, �t is the change in time t, and T is the
absolute temperature. The activation energy for grain
boundary migration can be taken as the activation
energy for self-diffusion or for recrystallization. The

pre-exponential factor k and exponent 1/n can be esti-
mated from experimental results reported in the litera-
ture [29–32]. The exponent n varies between 2 and 10
depending upon impurity content (e.g. n=2 for ultra
pure metals). The final grain size is obtained by numer-
ically integrating Eq. (3a) during cooling. This formal-
ism was applied to the three metals and grain sizes were
obtained. The activation energies, pre-exponential fac-
tors, exponents 1/n, and predicted grain sizes are given
in Table 1. The values for Cu, Ta and Ti fluctuate
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Fig. 5. (a) Normalized temperature as a function of plastic strain for
titanium, copper, and tantalum (b) Shear-band cooling curves for
titanium, copper, and tantalum

tc is the time required to heat the specimen to the critical
recrystallization temperature and �c is the critical strain
at which T/Tm=0.4. These times range, for the speci-
mens analyzed, from 2 to 5×10−5 s. This time is lower
by one order of magnitude than the cooling time (see Fig.
5(b)). This would also exclude migrational recrystalliza-
tion. Thus a migrational mechanism alone cannot occur
either in deformation or cooling and cannot account for
the recrystallized structure.

Derby [33] classifies dynamic recrystallization mecha-
nisms into rotational and migrational types. Rotational
recrystallization needs concurrent plastic deformation. It
is well documented for geological materials such as
quartz [34], halite [35], marble [36], and sodium nitrate
[37]. The observations in shear bands of copper [14],
tantalum [18] and titanium [25] are suggestive of this
mechanism. Indeed Meyers and Pak [25] suggested a
rotational recrystallization mechanism in titanium, and
this was corroborated by Meyers et al. [15], Andrade et
al. [14] for copper, and Nesterenko et al. [18], for
tantalum. Fig. 6 shows the primary features of the
process by which rotational dynamic recrystallization is
thought to occur. As can be seen from this figure, a
homogeneous distribution of dislocations rearranges
itself into elongated dislocation cells (i.e. dynamic recov-
ery). As the deformation continues and as the misorien-
tation increases, these cells become elongated subgrains.
Eventually, the elongated subgrains break up into ap-
proximately equiaxed micrograins. Fig. 7 shows a struc-
ture produced in tantalum subjected to a strain of 5.5.
These elongated subgrains are a characteristic feature of
copper and titanium subjected to subrecrystallization
strains. These elongated structures correspond to stage(c)
in Fig. 6 and are seen in many metals subjected to high
strains, as reported by Gil Sevillano et al. [38], among
others. Hughes and Hansen [39] reported rotations of
30–45° at medium and large strains (cold rolling reduc-
tions from 70 to 90%). Hughes and Kumar [40] made
detailed TEM observation on heavily deformed Ta and
found evolution from Configuration b–c in Fig. 6. Hynes
et al. [41] modeled this process of grain boundary
rotation using a bicrystal and calculating numerically the
strains using crystal plasticity theory.

The formation of these elongated sub-grains is ana-
lyzed below. This process of rotational recrystallization
was modeled by Meyers et al. [42] using dislocation

around 2�9×10−4 �m; this is clearly unrealistic and
it is concluded that migrational recrystallization does not
occur during cooling. It can be seen that the calculated
grain sizes assuming migrational recrystallization during
cooling are inconsistent with the observed results. It is
also instructive to establish the deformation time. The
deformation time t is simply given by the total strain
divided by the strain-rate. These times are, respectively,
for titanium, copper, and tantalum: t=4×10−5; 2.5×
10−5; and 10×10−5 s. Only a fraction of this deforma-
tion time occurs at a temperature sufficient to induce
recrystallization. Hence, the time for recrystallization, tr,
is given by:

tr= t− tc= t−
�c

�� (4)

Table 1
Grain growth parameters for Cu(FCC), Ta(BCC), and Ti(HCP)

k0 (ms1/n) Q (kJ/mol) nMaterial d (�m) Source

2255–32672.5 Weinig and Machlin [32]Cu 1.8×10−4

Ta 30019.7 10 8.6×10−4 Vandermeer and Snyder [30],Kraschenko and Statsenko [31]
4.3Ti 322 1 3.9×10−4 Okazaki and Conrad [29]
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Fig. 6. Schematic illustration of microstructural evolution during high-strain-rate deformation. (a) Randomly distributed dislocations; (b)
Elongated dislocation cell formation (i.e. dynamic recovery); (c) Elongated subgrain formation; (d) Initial break-up of elongated subgrains; and
(e) Recrystallized microstructure( from Nesterenko et al. [18]).

energetics. The strain energy for a random dislocation
configuration (a in Fig. 6) is given, per unit volume of
material, by

E1=�d
�A�b2

4�

�
ln
� 	

2b�d
1/2

�
(5)

where A is a constant depending upon the character of
the dislocation, � is the shear modulus, b is the magni-
tude of the Burgers vector, 	 is a constant which takes
in account the core energy of the dislocation, �d is the
dislocation density. If the dislocations are arranged into
cells, the energy is altered. A simple manner to repre-
sent the elongated cells is to assume that they are
ellipsoidal. This corresponds to Configuration b in Fig.
6. The cell walls can be modeled as tilt boundaries. For
an ellipsoid with aspect ratio k, the surface area S and
volume V are given by:

S=2�f(k)W 2 V=
4
3

�kW 3

f(k)=1+
k2

�k2−1
sin−1��k2−1

k
�

(6)

where 2W is the cell width. A dislocation density, �d,
can be assumed to be completely arranged in the cell
walls. Eq. (7) represents the energy if dislocations are
arranged into cells:

E2=�d
�A�b2

4�

�
ln
� e	

4�b
�S

V
� 1

�d

n
(7)

The dislocation spacing, Dd, at the tilt (cell)
boundaries is related to the misorientation, 
, by:

Dd=
b

2sin(
/2)
�

b



(7A)

Fig. 7. TEM micrograph showing elongated subgrains in Ta subjected
to a shear strain of 5.5 at a strain rate of 5×104 s−1.
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Fig. 8. Critical dislocation density �* and resulting misorientation angle 
* as a function of cell width 2W.

Eqs. (5) and (7) give the total energy per unit volume
due to the dislocations in Configurations a and b,
respectively. For low dislocation densities, E1�E2. The
condition E1=E2 gives the following expressions for
the critical dislocation density �d* and misorientation
angle 
* at which Configuration b (Fig. 16) is of equal
energy to Configuration a:

�d*=
�3e

4�

�f(k)
k
�� 1

W
�n2

(8)


*=
3
4
�e

�

�2�f(k)
k
�� b

W
�

(9)

It can also be shown that the energy difference
between Configurations a and b is a maximum for
k� +�, from which f(k)/k=�/2. Substitution of this

condition into Eqs. (8) and (9) gives the following
expressions for the critical dislocation density �d* and
resulting misorientation angle 
*:

�d*=
�3e

8
� 1

W
�n2

(10)


*=
3e2

8�

� b
W
�

(11)

Eqs. (10) and (11) are plotted in Fig. 8 as a function
of cell width for tantalum (b=2.333 A for {112}�111�
dislocations, the favored slip system for this metal in
dynamic deformation). The predicted misorientation
angles for the observed cell widths are in excellent
agreement with measured values. It is interesting to
note that maximum energy difference between configu-
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rations a and b is given for an aspect ratio k� +�.
This is also consistent with observation that once the
dislocation cells initially form, they are very long.

These results are in agreement with the TEM obser-
vations. A typical cell width varies between 0.1 and 0.3
�m, and cell formation occurs at a strain of approxi-
mately 1.8, with a temperature rise of 400 K. This
corresponds, approximately, to a dislocation density of
1010 cm−2. The predictions of Fig. 8 provide similar
values for �* and 
* for dislocation densities in the
range 1010–1011 cm−2.

After the dislocation sub-grains have formed, there
must be a net increase in dislocation density as plastic
deformation continues. If this increase in dislocation
density is primarily accommodated at cell walls, the
misorientation between cells is expected to increase if
cells do not dissociate (consistent with observations). It
will be shown bellow that the misorientation angle 


can be expressed in terms of the dislocation density and
the plastic deformation.

After dislocation cells have formed, dislocation den-
sity � is given by:

�d=



Wb
(11A)

Since �=1/WD and Dd=b/
 for small dislocation
spacing in low angle grain boundaries, one has, from
Eq. (10)

1
W

=
8
3e

�d*
1/2 (12)

Therefore,

�d=
8
3e




b
�d*1/2 (13)

�d

�d*
=

8
3e




b�d*1/2 (14)

From Eqs. (10) and (11), eliminating W :

�d*=
��
*

eb
n2

(15)

Substitution into Eq. (12) yields:

�d

�d*
=

8
3�

� 



*
�

(16)

But 8/3��1; thus

�d

�d*
�





*
(17)

For strain, applying the Orowan equation and Eq.
(10):

�*=�d*b�1=
9e2

64
�b�1

W 2

�
(18)

where � is the average distance traveled by each dislo-
cation. After dislocation cells have formed,

�=�db�2 (19)

�

�*
=
��2

�1

���d

�d*
�

=
��2

�1

� 8
3�
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�1

�2

�1.




*
�
� �

�*
�

Thus:� 



*
�

�
��d

�d*
�

�
� �

�*
�

(22)

The ratios between the misorientations, dislocation
densities and plastic strains are approximately the same.
Cells evolve into sub-grains as the misorientation in-
creases. Beyond 
*=2–2.5°, the adjacent grains define
random boundaries. Random boundaries constitute
barriers for dislocations. As observations show, the
elongated cells eventually break-up longitudinally. This
must be due to a slow-down in the ability of the cell
walls to accommodate dislocations or due to capillary
type of instability. This leads to a reorganization of
dislocations into low-energy boundaries perpendicular
to the cell walls. The breakup of the subgrains to form
micrograins is the second stage of this process and
requires thermal energy and diffusional processes (al-
beit at a very small scale). This corresponds to the
transition d–e in Fig. 6. Small grain-boundary rota-
tions are required and the driving force is the minimiza-
tion of the overall energy as well as torques applied to
the triple points.

It is interesting to note that as early as 1961, Sabato
and Cahn [43] observed recrystallized shear bands in
uranium subjected to a 70% reduction by forging. Part
of the recrystallized grains formed as a result of static,
post-deformation recrystallization; however, it is very
possible that grains too small to resolve by optical
microscopy were the result of dynamic recrystallization.
The shiny, ‘transformed’ appearance reported by many
investigators in shear bands in steels is the result of a
fine recrystallized structure with an associated dissolu-
tion of carbides, resulting in an increased resistance to
etching [12,44,45]. These features were in the past mis-
takingly identified as phase transformation products.

The relaxation of the broken-down elongated sub-
grains into an equiaxed micro-crystalline structure can
occur by minor rotations of the grain boundaries lying
along the original elongated boundaries, as shown in
Fig. 9. If each longitudinal grain boundary segment AB
rotates to A’B’ by an angle 
=30°, an equiaxed struc-
ture will be produced. This is illustrated in Fig. 9(b). It
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will be shown how this can be accomplished. The flux
of atoms along the grain boundary can occur at rates
that are orders of magnitude higher than in the bulk.
The activation energy for grain boundary diffusion is
approximately one half of that for lattice diffusion, and
at T/Tm=0.5, the ratio between grain boundary coeffi-
cient of diffusion, DGB and lattice coefficient of diffu-
sion, DL is:

107�
DGB

DL

�108

These results are reported for FCC metals by Sutton
and Balluffi [46] and Shewmon [47]. The activation
energy for grain-boundary diffusion is approximately
one half of that for lattice diffusion; hence, the differ-
ence increases as the temperature decreases.

A general form of Fick’s law, expressed in terms of a
potential energy gradient, can be obtained [46]. The
force Fb , acting on a particle, is:

Fb =�V (23)

where �V is the gradient of the potential energy field.
The mean diffusion velocity �� is the product of the
mobility M by this force:

�� =MFb (24)

The mobility of the diffusing species is defined as (it
has units of velocity/force):

M=
D
kT

(25)

where D is the diffusion coefficient. The flux along a
grain boundary with thickness � and depth L2 is equal
to (the cross-sectional area is L2�):

J=L2�CMF=
�L2�DCm

kT
�

F (26)

Cm, the concentration of the mobile species, is ex-
pressed in terms of mass per unit volume.

The rotation of the boundaries is driven by the
minimization of the interfacial energy. The force ex-
erted by the grain boundaries is represented in Fig. 9(d)
and is equal to:

F=�
�

1−2 cos

3

2
�

L2 (27)

The relationship between the grain boundary rota-
tion and the volume flow, dV, required through the
mid-point of the grain boundary AB is (this is com-
puted per thickness, L2):

Fig. 9. Rotation of grain boundaries leading to equiaxed configuration: (a) broken down subgrains; (b) rotation of boundaries; (c) a grain
boundary AB under effect of interfacial energies; (d) material flux through grain boundary diffusion and rotation of AB to A’B’.
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Fig. 10. Angle of rotation of micro-grain boundary AB as a function
of time for (a) different temperatures and (b) different lengths (0.1,
0.3, 0.5, and 1 �m) at T/Tm=0.45.

dm/dt is the mass change, which is the rate of vol-
ume change multiplied by �, the density.

The rate of mass change is the flux, and we have,
substituting Eq. (26):

d


dt
=

4 cos2 


L2L1
2�

J=
4 cos2 


L2L1
2�

�L2�DCm

kT
�

F (31)

Eq. (27) is substituted into Eq. (31) by noting that.


3

2
=

�

2
−
 (32)

d


dt
=

4 cos2 


L1
2�

�DCm

kT
�(1−2 sin 
)L2 (33)

One considered equiaxed grains and L2�L1; one
also considered one sole diffusing species, and Cm=
� :

4�D�

L1kT
t=

� 


0

d


cos2 
(1−2 sin 
)
(34)

Integrating by parts one arrives at:� 


0

d


cos2 
(1−2 sin 
)
=

tan 


(1−2 sin 
)

−
� 


0

2 sin 


(1−2 sin 
)2 d
=
4�D�

L1kT
t) (35)

And finally:

tan 
−2
3 cos 


(1−2 sin 
)
+

4

3�3
ln

tan 

2−2−�3

tan 

2−2+�3

+
2
3

−
4

3�3
ln

2+�3

2−�3
=

4�D�

L1kT
t (36)

The predictions of Eq. (36) for copper are shown
in Fig. 10. In Fig. 10(a) the temperature is varied
from 0.35 to 0.5Tm for a subgrain size of 0.3 �m; in
Fig. 10(b) the sub-grain size, L, is varied from 0.1 to
1 �m. The parameters used in Eq. (36) are given in
Table 2.

The rate of rotation decreases with increasing 


and asymptotically approaches 30° as t��. The cal-
culations predict significant rotations of the boundary
within the deformation time (�5×10−5 s or 0.05
ms) at temperatures of 0.45 and 0.5Tm, for micro-
grain sizes of 0.1–0.3 �m. Thus, the second stage of
rotational recrystallization can also take place during
plastic deformation. This does not exclude the possi-
bility of reorientation/accommodation of the grain
boundaries during cooling.

3.2. Ceramics

Both fractured and granular ceramics undergo
shear localization in deformation, and this is the di-

Table 2
Parameters for Grain Boundary Rotation

Parameter Value Source

Grain boundary energy, � Murr[48]0.625 J/m2

Grain boundary thickness, 0.5 nm Sutton and
� Balluffi[46]

Shewmon[47]Grain boundary diffusion 10−12.3 m2/s
T/Tm=0.5coefficient, DGB

10−13 m2/s
T/Tm=0.45
10−14 m2/s
T/Tm=0.4
10−15.5 m2/s
T/Tm=0.35

L2d


4L2

=dV (28)

dV is the volume transferred and L is the instanta-
neous length of the segment A’B’ (Fig. 9(d)). But:

L=
L1

cos 

(29)

where L1 is the initial length, or AB. Thus

d


dt
=

4 cos2 


L2L1
2

dV
dt

=
4 cos2 


L2L1
2�

dm
dt

(30)
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rect consequence of avoiding dilatation that accompa-
nies homogeneous deformation. This dilatation of an
idealized fragmented solid or fully dense granular ag-
gregate is shown in Fig. 11; hexagonal arrays are
represented in Fig. 11(a). In the absence of confining
pressure, the shear stress � will produce movement of
the hexagonal blocks (Fig. 11(b)) and this results in
displacements , which produce dilatation (hatched ar-
eas marked). With a superimposed hydrostatic compo-
nent of the stress, this dilatation creates additional
friction stress which results from the pressure rise under
confined deformation. A simple yet elegant solution
found by nature is to localize deformation in a single
region and to minimize dilatation. This is shown in Fig.
11(c) and (d). The dilatation is now localized in the
shear band.

Shear localization is an important deformation mode
in the quasi-static mechanical response of granular
materials; it has been widely investigated both from
analytical and experimental point of view [49–60].
Rudnicki and Rice [49] developed a general formulation
for shear localization in pressure-sensitive dilatant ma-
terials, of which granular materials are a special case.
There are no reports, to the authors’ knowledge, of
shear localization under high-strain-rate loading of
granular materials, before the work of Nesterenko,
Meyers and Chen [61,62] on alumina.

Shear localization under dynamic loading was ob-
served in both prefractured and granular Al2O3 [61,62]
and SiC [63,64]. The micromechanism is dependent on
particle size, and two principal mechanisms were
identified:
1. Large particles: when the particles are larger than the

critical flaw size for fracture, under imposed condi-
tions of stress and strain rate, they fracture. The
comminution (or attrition, as called by Potapov and
Campbell [65]) is an integral part of the localization
process. Particles break and this process produces a
localization region. Particles adjoining the localiza-
tion region are ‘dragged’ into the shear band and
undergo erosion. The fine particulates formed in the
shear band act as a lubricant and ensure localization.
Fig. 12(a) and (b) show this process for prefractured
and granular SiC; a schematic representation is
shown in Fig. 12(c) [63,64].

2. Small particles: when the size of particles is below ac,
the critical flaw size, they no longer fracture under the
imposed conditions. Shih et al. [63,64] calculated the
critical particle size for the change in regime. They
used a Weibull distribution of flaws and a Griffith
failure criterion. Fig. 13 shows the resulting analytical
prediction. It is found that failure is initiated in the
region of the sphere (idealized shape) in which the
stress state (i.e. three principal stresses) is compres-
sive. The critical particle size (particle size below
which no fracture occurs, at the prescribed superim-
posed pressure) decreases as the superimposed stress
is increased. Three critical particle sizes are shown in
Fig. 13: ac1, ac2, and ac3. They correspond to different
threshold values of the superimposed pressure: P=5
GPa for ac1=0.4 �m; P=2 GPa for ac2=4 �m; and
P=1 GPa for ac3=40 �m. As the superimposed
pressure decreases, the critical particle size increases.
Since there is no comminution within the shear
localization region when the particle size is below the
critical size for fracture, the particles flow past each
other and undergo plastic deformation and repack-
ing. This results in significant heat evolution, and
temperature rises that lead to fusing of the particles
and bonding. The calculated temperature rise for SiC,
assuming a bilinear strength dependence of tempera-
ture, is shown in Fig. 14. It was obtained from the
classic Fourier heat transfer equation:

�

�t
(�CT)=k1

�2T
�x2 +��

��

�t
(37)

where k1 is the heat conductivity, � is a coefficient
describing the efficiency of converting plastic work into
heat; � and C are the material density and specific heat.
The temperature in the center of the band rises to 2400°C,
for a shear strain of 12 and �=1. Fig. 15 shows the
appearance of the shear band for Al2O3 (Fig.15(a)) and
SiC (Fig. 15(b)). In the alumina (unpol-

Fig. 11. (a,b) Homogeneous deformation of hexagonal array of
fragments, causing dilatation, (c, d) Shear localization under confined
shear deformation of hexagonal arrays, avoiding dilatation (from
Shih et al. [63]).
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Fig. 12. Micromechanism of shear band formation in (a)prefractured;
(b)granular ceramics. The schematic representation of mechanism is
shown in (c)

3.3. Non-crystalline materials

The absence of work hardening of many non-crys-
talline materials (polymers and glassy metals) predis-
poses them to shear localization. The mechanisms by
which inelastic deformation takes place have been pos-
tulated by Deng et al. [6] and Bulatov and Argon [7–9]
and involve the nucleation of shear ellipsoids, in which
the atoms undergo reorganization and plastic strain
ensues. It has also been shown by Bulatov and Argon
[9] that these strain ellipsoids organize themselves into
shear bands. The experiments carried out by Pershin
and Nesterenko [67] for metallic glass show that, under
dynamic loading conditions, plastic deformation is con-
centrated into shear bands. The metallic glass foil (30
�m thick), Co58Ni10Fe5Si11B16, was wrapped into a
cylindrical configuration and submitted to a slightly
modified version of the explosive loading geometry
presented in Fig. 2(b). The displacements within the
shear bands as well as the thickness can be readily seen
from the markings. Fig. 16 shows a typical shear band,
evident from the offset on the foil. The shear band
thickness was characteristically 5 �m for this alloy, and
shear strains in the range of 4–8 were observed. Not
much can be said, at present, about the microstructural
evolution within the shear bands, but it can be specu-
lated that it remains glassy. The shear band thickness is
considerably below that of the foil, ensuring a cooling
rate that is high. Nevertheless, the possibility of crystal-
lization cannot be excluded, and transmission electron
microscopy can reveal the microstructural details.

4. Self organization

4.1. Trajectories and spacing

All experiments carried out using the thick walled
cylinder methods revealed that the shear bands do not
occur in a random manner, but with a well established
and self-organized pattern. Their trajectories were, in
all cases, spiral.

Fig. 13. Relationship between external pressure P and critical particle
size for comminution

ished section shown), the particles are deformed and
show evidence of plastic flow (see arrows). In the SiC
(polished section shown), complete bonding has oc-
curred, and the microhardness indentation revealed the
same value (26 GPa) as for bulk, fully densified mate-
rial. The original particles cannot any longer be seen in
the polished section of SiC. This is clear and irrefutable
evidence for plastic deformation and heating.
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Fig. 14. Calculation temperature at the middle of SiC shear band (shear band width: 25 �m; �s=12) (from Shih et al.[64]).

The shear band morphology can be obtained by
calculating the trajectory of the tip of the shear local-
ization region. Fig. 17(a)– (c) show, in a schematic
fashion, the initiation and propagation of shear bands.
The following assumptions can be made:
1. The overall movement of the material, at distances

relatively far outside the central hole, is radially
convergent with an axis of symmetry coincident
with the axis of the cylinder. In actual deformation,
the geometrical constraints are such that an addi-
tional bending of the shear segments is required for
the total collapse of the void.

2. The critical effective strains for shear band initiation
(at radius Ri) and propagation are identical and
independent of strain rate. Under pure shear, the
hypothesis of critical effective strain or critical shear
strain are identical.

3. Shear-band initiation takes place at the internal
surface of the hole and all shear bands are created
simultaneously.

4. The tip of a shear band propagates along the sur-
faces of maximum shear strain.

5. Material is incompressible.
The critical shear strain for shear-band initiation is

equal to (see Fig. 17):

�c�2 ln
�R0

Ri

�
= ln

�R0
2

r f
2 +1

�
(38)

rf is the final radius of the shear-band extremity; R0 and
Ri are given in Fig. 17. The propagating shear band at
an intermediate stage of the collapse process is depicted
in Fig. 17(d), an element undergoes a displacement
from point 1 (at radius r1) to point 2 (at radius r) after
complete collapse. Point 3 indicates in a schematic
fashion the break in symmetry produced by a shear
band. The shear band forms at an angle of 45° with the
radius at the point r1. This angle will decrease as
deformation proceeds; it is possible to establish the
change in 	 with r.

With the assumption (Assumption 1) that the mate-
rial with shear bands maintains its movement close to
cylindrical symmetry, the radial and hoop true strains
from the point corresponding to the initial radius r1

Fig. 15. (a) Shear band in Al2O3 (SEM); notice deformed particles
and effect of heat(from Nesterenko et al.[71]). (b) shear band in SiC
(polished surface; SEM), Notice hardness indentation at center of the
band(from Shih et al.[64]).
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Fig. 16. Shear band in Co58Ni10Fe5Si11B16 glass; displacement � and

shear-band thickness t are marked in photograph.

Using Eq. (39) it is possible to obtain an equation for
the angle 	 of the shear band with the radial direction
(Fig. 17(d)):

tan 	=e−2�rr=
� r

r1

�2

(40)

The shear strain at r1, according to Assumption 2,
should be equal to �c; this leads to an expression for r1:

2 ln
�r10

r1

�
=�c � r1=r10e

−�c/2 (41)

The radius r10 corresponds to the initial position of
the point that has radius r1 when the shear band starts.
Combining Eqs. (40) and (41) and using the relation
r10

2 −R0
2=r2 (constancy of volume), one obtains an

expression for � in a fully collapsed cylinder in terms of
the initial hole radius R0, the radius of the final point of
the shear band extremity rf, and a general radius r :

tan 	=
r2

r f
2

(R0
2+r f

2)
(R0

2+r2)
(42)

It is easy to see that when r approaches zero, the

(the position corresponding to shear band creation), up
to the end of the collapse process (r1�r), are:

�rr= ln
�r1

r
�

, ���= ln
� r

r1

�
(39)

Fig. 17. (a-c) Generation and propagation of shear bands in collapse of thick-walled cylinder; (d) Deformation of a material element with an
initiating shear band as it is displaced from original position at a general radius r (	�45°).
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Fig. 18. Shear-band patterns on cross-section produced by collapse of thick-walled cylinder; (a) experimental tracing for titanium; (b) calculated
pattern

angle 	�0, providing a more radial-like geometry of
shear bands in the vicinity of collapsed hole.

Eq. (41) enables one to find the geometry of the shear
band after complete pore collapse in closed form. In
polar coordinates r, 
 :

tan 	=r
d


dr
(43)

By combining Eqs. (42) and (43) one obtains an
equation for the shear band in a completely collapsed
cylinder in the frame of the aforementioned
assumptions:


=
(R0

2+r f
2)

r f
2

� r

0

r dr
(R0

2+r2)
=

1
2
�

1+
R0

2

r f
2

�
ln
�

1+
r2

R0
2

�
(44)

Eq. (44) predicts the general morphology of a shear
band. An equation can be developed that describes the
entire assemblage of shear bands by assuming that they
create a periodical array with spacing L and the same
sense. In order to do this in a more general way, the
critical shear stress for shear band initiation is used to
replace rf; thus, the solution acquires generality. The
number of shear bands forming on the circumference
has to be an integer, and therefore the calculated
number i has to have an integral upper bound, which is
indicated by ‘int ’ below. Each solution i represents one
curve.


i=e�c/2�i�2L
R0

+
e�c/2

2
ln
�

1+
r2

R0
2

��
(45)

int
�2�R0

�2L
e−�c/2�� i�1 (46)

This expression was derived with the basic assump-
tion that the tip of the shear band (outermost extrem-
ity, which propagates outwards) is subjected to growth
governed by the orientation of maximum shear stress

(45° with the radial direction). The shear band left
behind is assumed to homogeneously move inward with
tube collapse. Shear-band trajectories produced by the
complete collapse of a titanium cylinder are shown in
Fig. 18(a) and compared with the prediction in Fig.
18(b). The good agreement obtained is clear. In the
calculated trajectories, the number N was set equal to
20, based on the experiments. All shear bands were
clockwise spirals in this particular experiment [66].

Cross-sections of experiments carried out for a num-
ber of materials representative of metals (Ti, 304SS),
ceramics (Al2O3 and SiC), and polymers (teflon) are
shown in Fig. 19. In all experiments the characteristic
logarithmic spiral configuration described in Fig. 18 is
observed. Since the collapse is only partial for all
experiments except for teflon, the spirals do not con-
verge completely towards the center. Nevertheless, the
periodic nature of the shear bands is evident, and they
tend to group themselves into regions of clockwise and
regions of counterclockwise rotation. In some cases
only one family (clockwise or counterclockwise) is ob-
served; for most cases, two or four families are ob-
served. The measurement of the spacing along the
internal wall of the cylinder, corrected for the fact that
the bands form at 45° from the radial direction (�2/2)
provides the spacing. This spacing is given in Table 3
and is a function of a number of parameters. This
research is only at its early stages, but distinct differ-
ences can be observed. The spacings range from 0.1 to
3.2 mm.

For the metallic glass, a slightly different experimen-
tal configuration was used [67]. Nevertheless, a charac-
teristic shear-band spacing was also revealed, and is
clearly shown in Fig. 20. Four shear bands are shown
by arrows. The mean spacing between shear bands was
found to be 0.6 mm, consistently with titanium and
teflon.
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Fig. 19. Cross-section of thick-walled cylinder subjected to partial collapse with different materials showing similar pattern of shear bands.

4.2. Metals

The current models for predicting the shear band
spacing are based on different analyses of shear band-
ing. The basic equations for shear localization with
shear along direction Ox axis are the momentum and
energy conservation equations including thermal
transfer:

�
��

�t
=

��

�y
(47)

�C
�T
�t

=���� +k1

�2T
�y2 (48)

where � is material velocity, and � and �� are shear stress
and shear strain rate, respectively. The other symbols
were defined previously. � is the thermal conversion
coefficient. This factor is usually in the 0.9–1 range.

Eq. (48) is identical to Eq. (37); the conversion factor �

has, however, a different interpretation, because frac-
ture is a major process in ceramics.

Table 3
Shear Band Spacing

Materials Characteristics Spacing, mm

CP Titanium Initial 3.15
0.6Well-developed

Stainless Steel 0.12Initial
SS 304L 3.2Well-developed

Granular 0.79–1.04Al2O3

1.8Prefractured
GranularSiC 0.4–1
Prefractured 1.7–3

Teflon 0.6
Metallic Glass 0.6

Co58Ni10Fe5Si11B16
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Fig. 20. Shear bands in metallic glass in cylindrical collapse geometry
(arrows indicate shear bands)

The first theoretical model for shear band spacing
was proposed by Grady and Kipp [68]. In this ap-
proach, the rapid loss of strength across the developing
shear band affects neighboring material by forcing it to
unload. This process is communicated outward by mo-
mentum diffusion, rather than by elastic wave propaga-
tion. Fig. 21(a) shows a shear band (thickness a) with
the displacement fields at two times t1 and t2. At t1 the
displacement is zero. A shielded region propagates
away from the band. It is represented by the rigid–plas-
tic interface in Fig. 21(a). The minimum separation
between independently nucleating bands arises from
computing the distance traveled by the diffusive un-
loading front during the time required to unload as
localization occurs. The predicted spacing, LGK is:

LGK=2
� 9k1C

�� 0
3a2�0

n1/4

(49)

In Eq. (49) the applied shear strain rate is �� 0, and the
flow stress is assumed to be linear function of tempera-
ture with a softening coefficient a (Tr is a reference
temperature, at which the flow stress is equal to �0):

�=�0[1−a(T−Tr)] (50)

Grady and Kipp (GK) [68] considered a simple rate-
independent material. Wright and Ockendon (WO) [69]
developed an analysis based on the notion that shear
bands arise from small growing disturbances in an
otherwise uniform region. This concept had been previ-
ously advanced by Grady [70]. Disturbances do not
propagate in perpendicular directions, but simply grow
in place. Fig. 21(b) shows, in schematic fashion, two
wave trains at successive times t1, t2, and t3. The wave
with the largest wavelength, L2, shows a higher rate of
amplitude increase. Thus, it gradually dominates the
other wavelength, and will determine the spacing of the
shear bands. The most likely minimum spacing is ob-
tained by finding the fastest growing wavelength.

Wright and Ockendon [69] applied the perturbation
analysis to the conservation equations according to the
approach introduced by Clifton [72]. The three equa-
tions and obtained a spacing, LWO, equal to:

LWO=2�
�m3k1C

�� 0
3a2�0

n1/4

(51)

The material flow stress was assumed to be both
temperature and strain-rate dependent; hence Eq. (50)
was modified by incorporating strain rate effects
through parameter m (�0 is a reference strain rate):

�=�0[1−a(T−T0)]
� ��

�� 0
�m

(52)

Although the approaches taken by GK and WO are
completely different, the former concentrating on the
stress collapse mechanism, and the latter concentrating
on the earliest stages of localization, it is a remarkable

Fig. 21. Two mechanisms of determining shear band spacing (a)
momentum diffusion(Adapted from Grady and Kipp[68]); and (b)
growth of perturbation

Three possible mechanisms for the determination of
shear band spacing are discussed below: (a) the Grady–
Kipp momentum diffusion mechanism; (b) the Wright–
Ockendon–Molinari perturbation mechanism; (c) a
mechanism based on microstructural inhomogeneities.
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Fig. 22. Pattern of shear bands in stainless steel at different stages: (a)
initial stage, �eff=0.541; (b) shear bands propagate and the new
spacing is developing, �eff=0.915.
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for a constitutive equation of the form:

�=�0(�+�i)n� ��
�� 0
�m�T

Tr

��

(54)

where �i is a pre-strain and �0 is the wave number of the
perturbation; �, n, m and �0 are the material parame-
ters. When the work hardening is absent (n=0), Eq.
(53) reduces itself to:

LM=2�
� m2k1C(1−aT0)2

(1−m−1)�2�� 0
3�0a2

n
(55)

This equation is similar to WO except for the term
(1−aT0)2 which can create a difference in calculated
values on the order of 0.3.

Nesterenko et al. [73] carried out experiments on
titanium in which the maximum strain was varied by
selecting the appropriate stopper tubes(see Fig. 2(b)
and (c)). A detailed analysis and characterization was
also carried out for AISI 304L stainless steel, subjected
to two levels of plastic strain in the TWC method [74].
At an initial stage of plastic deformation (�eff=0.541), a
large number of small shear bands with lengths varying
between 0.1 and 0.8 mm were obtained (Fig. 22(a)). The
characteristic spacing was 0.12 mm. At an increased
level of plastic deformation (�eff=0.915) the number of
the small bands (�0.8 mm length) remained essentially
the same, while the spacing between the larger shear
bands had considerably increased, to 3.2 mm (Fig.
22(b)). Predictions using Eqs. (49), (51) and (55), for
G–K, W–O, and Molinari models, respectively, are
also shown in Table 4. It is clear that the WO–M
mechanism describes the initiation better, whereas GK
represents the shear-band spacing at a well developed
stage. These results are only preliminary; nevertheless,
they indicate that both mechanisms might be operating.
Similar results were obtained by Nesterenko et al. [73]
for titanium: the perturbation analysis represents the
initiation stage better, whereas propagation is affected
by the momentum diffusion equation. Prior to the
onset of localization, momentum diffusion is absent,
and its role is only felt in the propagation stage. Local
fluctuations in strain and temperature lead to the initia-
tion. Additionally, the surface of the inner cylinder wall
contains imperfections which lead to perturbations.

fact that except for numerical factors and the rate
constants, the two results are the same. The major
difference between Eqs. (49) and (51) is that strain rate
sensitivity affects the spacing in WO model and is not
present in the GK model.

Molinari [71] further developed the analysis; in this
model the important step which determines the shear
band spacing is related to the early stages of flow
localization, as in the WO model. The important fea-
ture of Molinari’s model is that it includes the strain-
hardening effect; the non-strain-hardening case can be
obtained as a special case. For power law strain hard-
ening, Molinari [71] obtained the spacing, given by

Table 4
Theoretical predictions and the experimental results for stainless steel

Exp. Data Initial stage LWO(mm)SS 304L Late stage Exp. Data LMO (mm)LGK(mm)

Spacing(mm) 0.117 0.166 2.623.199 0.160
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Fig. 23. Shear band initiation by microstructural inhomogeneities: (a)
grain-size inhomogeneity; (b) geometrical softening; (c) Peirce–As-
aro–Needleman textural localization and (d) dislocation pile-up re-
lease (from Nesterenko et al.[73]).

temperature rise and plastic deformation that would
initiate shear band. This mechanism has been proposed
by Armstrong and Zerilli [76].

4.3. Ceramics and glasses

In ceramics, there is a distinct difference between
prefractured and granular material. Al2O3 and SiC
showed consistent shear band spacings (Table 3): 0.4–1
mm for the granular condition and 1.7–3 mm for the
prefractured condition. The reasons for these differ-
ences are still poorly understood and could be due to
the softening rate. In the momentum diffusion formula-
tion, the higher the unloading rate along a band, the
lower the spacing among shear bands. Differences in
initial density could also account for the greater shear-
band spacing for the pre-fractured material: the density
of the (pre-compacted) granular ceramic is only 85% of
the theoretical value.

For metallic glasses and polymers practically nothing
is known; the spacing seems to be around 0.6 mm.

5. Conclusions

Shear localization is known to play an important role
in the inelastic deformation of materials at high strain
rates. The microstructural processes occurring in the
different classes of materials are presented:
1. Metals: Thermal softening is the first stage of this

process, leading to processes of dynamic recovery
and recrystallization with associated drops in the
flow stress. Calculations reveal, for the first time,
that the break-up of the elongated sub-grains and
diffusive rotation of the grain boundaries can occur
during the deformation process. This is direct sup-
port for the mechanism of rotational dynamic re-
crystallization proposed by Meyers and Pak [25] and
Meyers et al. [16] for titanium, Andrade et al. [14]
for copper, and Nesterenko et al. [73] for tantalum.

2. Ceramics and rocks: Granular and prefractured ce-
ramic (Al2O3 and SiC) were analyzed and shear
localization was found to occur by two different
mechanisms, dependent upon particle size:
2.1. particle break-up/comminution, when the size

exceeds a critical value ac.
2.2. Particle repacking and plastic deformation

with significant heat evolution leading, under
extreme conditions, to resintering of particles
when size is below the critical value ac.

3. Non-crystalline metals and polymers: The deforma-
tion processes leading to large scale localization are
most probably initiated by Argon ‘local inelastic
transformations’ that form in a cooperative manner
and organize themselves into shear zones. Further
investigation of this phenomenon by advanced char-

It is important to connect the WO–M and GK
models to microstructural processes happening in the
material. It is even possible that microstructural inho-
mogeneities rather than strain/temperature perturba-
tions or momentum diffusion, are the determining
factors in spacing. Possible micromechanisms for the
initiation of shear bands have been discussed by Meyers
et al. [16] and Nesterenko et al. [73]. A few possible
microstructural initiation sites are shown in Fig. 23;
they are all at grain scale. They are briefly discussed
below. There is always a distribution of grain sizes
within a material, and larger grains exhibit a lower
yield stress (�1, in Fig. 23), whereas smaller grains have
a higher yield stress (�2 in Fig. 23). The large grain will
deform preferentially and could be an initiation site.
Grain rotation can lead to softening, which is shown
schematically in Fig. 23(b). The increase in Schmid
factor of a grain with plastic deformation leads to
localized softening which can initiate a shear band. The
localized deformation of one grain can propagate along
a band as shown in Fig. 23(c). This mechanism of
localization through the cooperative plastic deforma-
tion of grains has been modeled by Peirce et al. [74],
and Anand and Kalidindi [75]. A fourth mechanism is
shown in Fig. 23(d). A dislocation pile-up, upon burst-
ing through a grain boundary, can generate the local
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acterization methods is necessary to elucidate the mech-
anisms.

These shear bands constitute the primary carriers of
inelastic deformation in high-strain rate deformation. In
a manner analogous to dislocations, that are the primary
carriers of plastic deformation in metals, the shear bands
self-organize themselves. Their spacing, which is depen-
dent on material and loading parameters, was investi-
gated in a collapsing thick-walled cylinder geometry. The
initiation of shear localization suggests a spacing dictated
by the following mechanisms:
1. Perturbation of the plastic deformation field with

spacing dictated by wavelength of perturbation show-
ing highest growth rate.

2. Momentum diffusion, through the unloading of ma-
terial surrounding a shear band, creating a shielded
region in which further shear localization is inhibited.

3. Microstructural inhomogeneities determining the ini-
tiation sites and, consequently, spacing of bands.
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